Steven C. Bagley and Gary L. Kopec

Editing images of Text

ecent advances in image scanning, storage, and retrieval have stimulated interest
in incorporating scanned documents within electronic document systems.
Integrating scanned documents with structured documents is an important step
toward making electronic document processing universally available. Most
approaches to this problem are based on one of two paradigms--—bitmap editing
and format conversion,

Conventional bitmap editors and paint programs treat scanned images as sim-
ple pixel arrays without internal structure. A major strength of this approach is
that bitmap editors are applicable to an open-ended class of images. Moreover,
almost by definition they preserve the detailed format and typographic design of
the input material. In particular, if distorions due to scanning and printing are
ignored, a bitmap editor behaves as an identity system if no editing operations
are performed.

There are numerous scenarios in which editing an image while preserving the
appearance of unedited material is important. In general, such scenarios involve
documents that originate in image form and are to be retained in irmage form
after modification. Examples include last-minute correction of spelling mistakes
before photocopying, modifying viewgraphs at meetings, exchange of document
drafts by fax, and recreational forgery (the construction of obvious parodies for
humeorous purposes). While it would seem that bitmap editors are ideally suited
to such applications, in practice their utility is often limited.

The primary problem is that current bitrnap editors support only relatively
low-level editing operations. Typical facilities include selection of polygonal
regions; cutting, pasting and copying selected regions; and painting operations
such as bit setting, clearing, and complementation. No attempt is made to clas-
sify the content of the image (e.g., as text or line art) and no operations are pro-
vided that assist higher-level contentspecific operations. Thus, for example,
using a paint program to delete a character from the middle of a word might

COMMUNICATIONS OF THE ACM December 1994/Vol.37. No.12 63

involve selecting the character by
drawing a polygon around it, clearing
the selected region and then selecting
and moving the following characters
to close the gap. As an isolated opera-
tion, this sequence ol actions is not
overly complex, However, text editing
at such a low level quickly becomes
tedious. As an example, consider the
case of rightjustified text where delet-
ing a character requires readjusting all
the interword spaces of the line and
possibly moving words from one line
to another.,

l’"()l‘ll]}l[CONVETSIOIL lli.l]l.\ Lo convert
a scanned document image into a
structured electronic representation
that can be manipulated using con-
ventional types of editors. Recogni-
ton procedures such as page seg-
mentation, character
i.lll(.! raster-ro-vector ('()11\"(,‘1'Si()11 are

recognition,

used to produce a document descrip-
tion in a language, such as SGML »
ODA, that 1s similar 1o the descrip-
tions used to create documents elec-
tronically [2]. The recovered sym-
bolic description is intended 0
completely capture the content and
format of the document and 1o be
used in lieu of the scanned image for
all subsequent document processing.

Format conversion is an appropri-
ate approach when significant use
will be made of the resulting symbolic
document representation. Examples
of such applications include transfer-
ring a large amount of material from
one document to another, language
translation, and full-text database
entry. For scenarios involving simple
unage-to-image transtformations, how-
ever, current format conversion tech-
nology has several problems.

The first problem concerns cur-
rent recognition algorithms, which
exhibit neither the accuracy nor the
robustness for totally autonomous
operation. As a result, format conver-
sion typically involves a significant
amount of manual proofreading to
correct recognition errors. A recent
estimate of the total cost for conver-
sion, including optical character rec-
ognition (QOCR) and proofreading, is
between $2 and 35 per page [13].
The eftort required to proofread a
long or complex document may be
excessive if the ultimate goal is to per-
form a small amount of relatively sim-

AN VAENEESAE AND DESIGN

ple editing.

I'he second problem s that al-
though format conversion can suc-
cesstully capture the content and log-
ical structure of a document, it is less
likely to preserve distinctive typo-
graphic details such as hyphenation,
line breaks, leading, and fonts. As
previously suggested, a desirable
property for an editor of image-based
material is that it function as an iden-
tity system unless the user explicitly
carries out editing operations. The
state of the art in document recogni-
tion is unlikely to satisty this criterion
for the foresecable future.

Another problem is that the sym-
bolic description generated by tormat
conversion is often expressed I a
language that is idiosyncratic to a
particular document processing sys-
tem. Because there is no universally
accepted interchange standard for
compound documents, using a struc-
tured document representation can
actually restrict rather than extend
the availability of a document.

Thus we see that conventional bit-
map editors are applicable to an
open-ended class of images and pre-
scrve image appearance but typically
have no recognition capability that
might assist higher-level operations
such as text editing. Conversely, sys-
tems based on format conversion cre-
ate symbolic descriptions that greatly
facilitate structured document pro-
cessing tasks, but are typically limited
in the range of document images they
will handle reliably. Bitmap editors
and conventional document recogni-
tion systems are therefore at opposite
ends of a spectrum parameterized by
increasing operation complexity and
decreasing image generality.

This article describes Image
EMACS, a text editor for scanned
document images, which illustrates
an intermediate point between the
bitmap editing and format conver-
sion paradigms. The aim of Image
EMACS is to provide familiar high-
level editing commands in a context
that preserves document appearance
except where the commands are ac-
tually applied.

The inputs and outputs of Image
EMACS are binary images of text.
The primary document representa-
tion within Image EMACS is a collec-

s‘ December 1994/ Vol 37, No i COMMUNICATIONS OF THE ACM

elements extracted
through simple geometrical analysis,

tion of unage
rather than an abstract symbolic de-
scription of the image. Image EMACS
is based on a principle of minimal in
terpretation: perform image analysis
only to the extent necessary to carry
out operations explicitly requested by
the user. Adherence to this principle
avoids the format conversion prob-
lems previously noted. Our approach
also builds on existing networks and
protocols for communicating docu
ment images and provides a natural
and smoothly evolving path from
paper-based work flows toward the
ubiquitous use and interchange of
electronic documents.

Image EMACS can be viewed as an
extreme form of a WYSIWYG (What
You See Is What You Get) page-
composition system. As such, it pro-
vides two distinct, but related, classes
of editing operations. The first class is
based on viewing text as a linear se-
quence of characters. 'The linear se-
quence model
common text-editing operations such

forms the basis for
as character insertion and deletion,
scarch, and linear
movement. The second class of oper-
ations 1s based on viewing text as a
two-dimensional

string cursor

arrangement of
glyphs on an image plane. Opera-
tions of the second class are con-
cerned with aspects of typography
such as character and line spacing
and line justification.

I'he linear text-editing operations
of lmage EMACS are patterned after
those of the text editor EMACS [14].
In terms of linear text editing, users
of Image EMACS should succumb to
the that they using
EMACS to edit an ordinary text file,
displayed as lines of characters, al-
though Image EMACS 1s actually
manipulating image components ex-
tracted from a bitmap. The choice of
EMACS in this respect is not essential
and a variety of other editing para-
digms could have been used. To em-
phasize this point (and for the beneti
of readers not familiar with EMACS)
we will describe Image EMACS com-
mands generically using descriptive
names and will minimize references
to particular user interface or key-
board interaction styles.

illusion are

The typographic facilities of Image

XBERIOX operafes a privafe long-disiance tele-
phone sysfem called Iofelnef. Mbe nefword con-
sisfs of 12 inferconnected ANKAT elephone swiich-
g cenfires wifhl circniis fo every major locakion b
the Unifed Stafes, Eorope, Oanada and Mexiono.
Infielnet, whien properly) nsed, cam Be an inponfant
prodoctivity fool, providing faster, more conve-

nieni less expensive flephone senvice fih

public long-disfance nefworks.

EMACS are not currently patterned
after any particular system. Many
aspects of typographic structure take
the form of global constraints on the
spatial arrangement of text elements.
Detecting and enforcing such con-
straints is computationally expensive,
and the development of appropriate
algorithms to do so is a topic of cur-
rent research in the document recog-
nition community. For this reason,
the typographic facilities of Image
EMACs are only those necessary to
support linear text editing and to imi-
tate certain simple capabilities found
in text editors such as EMACS.

Linear Text Editing in

Image EMACS

Text editing in Image EMACS is
based on two observations: Many text

editing operations do not make use of

the character labels of the characters
being edited (such as during copying
or deleting); and a character in an
English “book” style typeface is usu-
ally realized as a single connected
region of black pixels (a connected
component [5]). The correspondence
between characters and connected
components is well known and is ex-
ploited in many character recogni-
tion systems. The central insight be-
hind Image EMACS is that many fext
editing operations can be implemented di-
rectly in terms of geometrical operations on
connected components, without explicit
knowledge of the symbolic character labels,
that is, without character recognition.

In many text editors, editing oper-
ations are performed on a buffer con-
taining a set of linked lines, where

each line consists of a sequence of

characters. Image EMACS constructs
structure from an
image of text by first segmenting the
image into a sequence of lines and
then performing connected compo-
nent analysis on each line. Line seg-
mentation is currently based on the
assumption that lines are separated
by at least one complete row of blank
(i.e., white or ‘0’-valued) pixels. Fig-
ure 1 shows a sample text image with
a bounding rectangle drawn around
each character. (The terms character
and connected component will fre-
quently be used interchangeably, and
in place of the more precise descrip-
tion “"a group of connected compo-
nents that probably looks like a
character.”)

There are several important situa-
tions in which the correspondence
between characters and connected
components is more complicated
than a simple one-to-one mapping. A
single connected component in an
image, for example, can be the image
of several characters if the characters
are blurred together or form liga-
tures (e.g.,'fi” and ‘ffi"). Figure 1 con-
tains an example of merged charac-
ters, the ‘as’ in ‘faster’ on the seventh
line. Conversely, several connected
components can belong to the same
character if parts of the character
have dropped out or the character

a similar data

Ebe

Figure 1. Connected component
analysis of a sample textimage. A
bounding rectangle is shown
around each set of connected
components that have been
grouped into a character-like
unit.

intrinsically includes several parts
(e.g.,'1,”). Finally, formatting “char-
acters” such as Space and CR are
usually not manifested as printed
glyphs at all.

Image EMACS handles multipart
characters with simple connected
component grouping rules based on
similarity of horizontal position of
component bounding boxes. These
rules seem to correctly handle 1, ',
and all punctuation symbols except
for double quotation marks. Figure 1
contains several examples of ‘i’ and ‘}.’

The current implementation does
nothing special about ligatures and
treats them as single characters. We
have found the atomicity of ligatures
to be only a minor nuisance. Editing
most often involves deleting, copying,
or moving all of the characters in a
ligature anyway. In other cases it is
simply necessary to delete the liga-
ture and retype one or more of the
individual components.

If the horizontal distance between
two consecutive components on a line
is larger than a threshold, the inter-
component space is considered to

COMMUNICATIONS OF THE ACM December 1994/Vol. 37, No1z B

VISUALIZATION

AND DESIGN

- expensive tlephone
» expensive telephone

Figure 2. Example use of copy-
mouse-char to correct a spelling
mistake. A copy of the first '"'e" in
“expensive’ is inserted after the
“t"in ""tlephone'’: (a) Before;

(b) After.

correspond to a real Space character
and thus to indicate a word bound-
ary. For simplicity, each interword
space is treated as a single Space
character, independent of its size.
Each line is assumed to be terminated
by a CR character.

Table 1 identifies a small subset of

the Image EMACS linear text editing
commands. Most editing operations
take place in the vicinity of a distin-
guished buffer position that is
marked by a cursor. The cursor
movement commands identified in
Table 1 adjust the position of the cur-
sor. The insertion and deletion com-

Figure 3. Horizontal character
positioning. A copy of the first
“e" in "expensive’ is inserted
after the 't in “‘tlephone,” using
copy-select-char: (3) Before;

(b) After. The spaces after the '‘t”
and ‘e’ are preserved in ‘tele-
phone.”

mands provide various torms of “cut
and paste” editing. For example, the
command cut-region removes the
characters between the cursor and a
second buffer position called the
mark. Cut text is stored in a special
buffer from which it can be pasted
back, either at the same position (to
undo the cut) or at a different posi-
tion (to move the cut text). The com-
mand copy-mouse-char inserts at
the cursor a copy of the character lo-
cated under the mouse. Figure 2 il-
lustrates a simple use of copy-
mouse-char to correct a spelling
mistake in the text of Figure 1.

Inserting characters by normal
typing requires having established
associations (bindings) between the
keyboard keys and the character im-
ages. The key binding commands
in Table 1 create and manipulate
key bindings for printing characters.
The command key-bindings-from-
font binds keys to character images
taken from a stored font. When key
bindings are set from a font, docu-
ments produced using Image
EMACS look very much like those
from a conventional word processor,
except they are represented as bit-
maps rather than as sequences of
character codes.

The command teach-chars puts
Image EMACS into a special mode
(called “teach emacs”) for interactively

binding keys to character images
drawn from an existing text document.
When the user types a key in teach
mode Image EMACS binds a copy of
the character under the cursor to the
key and advances the cursor. After exit-
ing teach mode, any of the "taught”
character images can be inserted
by typing the corresponding key.

The command key-bindings-to-
buffer creates a buffer containing a
visible image encoding of the current
key bindings that can be edited
and saved just like any other image.
The command key-bindings-from-
buffer causes the current buffer to
be interpreted as such a representa-
tion and establishes the indicated key
bindings.

Image EMACS implements search
by comparing a sequence of reference
character images (the search string)
to successive character images in the
buffer until the match score exceeds a
preset threshold. The search string
can be specified by typing, in which
case it is constructed from the charac-
ter images that are bound to the keys.
Alternatively, the search string can be
specified using the mouse, either by
dragging the mouse across a se-
quence of contiguous characters or by
“hunt and peck.”

The search string match score at a
particular buffer position is the mini-
mum character match score between

- expensive flephone
- expensive felephone

55 December 1994/Vol 37, No 12 COMMUMNICATIONS OF THE ACM

the search characters and the corre-
sponding buffer characters. Charac-
ter matching is computed by normal-
ized binary cross-correlation [4], that
is, by counting the bits in the logical
and of the reference and buffer char-
acters and dividing by the geometric
mean of the bit counts of the refer-
ence and buffer characters. A match
is declared if the cross-correlation,
which is always in the range [0, 1],
exceeds a threshold.

The setting of the match score
threshold affects the relative numbers
of incorrect positive and negative
match decisions. Experience with
Image EMACS suggests that false
matches are preferred to missed
matches, because false hits simply in-
crease the number of times the search
for a particular string must be re-
peated to reach the desired instance,
whereas missing a match might cause
the overall search to fail. For any
given setting of the threshold, match
performance
length of the search string. Correla-
tion-based matching is particularly
effective when the search and buffer
character images are drawn from a
stored font, so that scanner noise and
shape variation are absent. In that
case, the match threshold can be set
to 1.0 (ie., an exact image match)
with the result that no false hits occur.

increases with the

Typography in image EMACS
Image EMACS is currently built with
the assumption that all text occurs in
a single column of horizontally ori-
ented lines, without any embedded
multiline figures, underlining, or ver-
tical rules. Text is assumed to be set in
an ordinary “book” face without dec-
orative features such as “drop caps.”
As noted previously, consecutive lines
must be separated by at least one row
of blank pixels.

The text column is assumed to oc-
cupy a single page defined by Carte-
sian pixel coordinates in which X in-
creases to the right and Y increases
downward. When an image file is
read into a buffer, the top and left
edges of the file image are taken to
fall on the X and Y axes of the page
image plane, respectively. The image
plane is conceptually infinite in all
directions, although there are no
commands that can cause text to

move to the left of the Y axis and no
way to begin a line above the X axis.

The most basic typographic facili-
ties in Image EMACS are concerned
with the horizontal and vertical posi-

tioning of characters within a line of

text. An early version of Image
EMACS (8] adopted a simple ap-
proach to horizontal letterspacing in
which the space after each character
is preserved as changes are made to
the text image. (More precisely, the
distance between adjacent character
bounding boxes is preserved.) This is
illustrated in Figure 3, which adds
character bounding boxes to the ex-
ample of Figure 2 to show the inter-
character spacing. The space between
the ‘t" and ‘e’ in ‘telephone’ in Figure
3(b) is equal to the space between the
‘t' and T in ‘tlephone’ in Figure 3(a).
Similarly, the space between the ‘e’
and ‘1" in ‘telephone’ is equal to the
space between the ‘e’ and %’ in ‘ex-
pensive.’

The letterspacing strategy illus-
trated in Figure 3 allows the amount
of space that precedes or follows a
character to depend (implicitly) on
the identty, style, and size of the
character. As a result, it tends to pro-
duce more satisfactory results than
simply using uniform spacing. How-
ever, problems frequently arise in the
case of characters with negative
sidebearings (e.g., ‘J') or when pair-
wise kerning spacing adjustments
have been used. The problem of neg-
ative sidebearings is illustrated in Fig-
ure 4(b), where the spaces after the
‘b, ‘e,” and 'J’ are the same as in Fig-
ure 4(a).

More recent versions of Image
EMACS have used an improved let-
terspacing algorithm in which font
metrics (left and right sidebearings,
descent below baseline) are estimated
for each character [7]. The estimated
font metrics are then used to position
the characters using the common
sidebearing model of character shape
and positioning [1]. Figure 4(c) shows
an example of character spacing
using estimated font metrics.

Vertical positioning of an inserted
character is accomplished by aligning
the baseline of the character with the
baseline of the surrounding text. The
required baselines are estimated as
part of the font metric estimation

objects
obejcts
obejcts

Figure 4. Comparison of two iet-
terspacing algorithms for text
image editing: {(a) Original image:;
(b) The space after each charac-
ter is preserved during editing;
(c) Intercharacter space com-
puted using estimated font met-
rics.

procedure.

The accuracy of the font metric es-
timation algorithm is a function of the
size and statistical composition of the
text in the image. While the algo-
rithm is generally reliable, unaccept-
able results sometimes occur, particu-
larly for images containing relatively
tew characters. Because correct char-
acter alignment is critical for visual
quality, several commands are avail-
able for manually adjusting character
position.

A number of commands are pro-
vided for adjusting the interword
spacing in a line and the alignment of
a line relative to the line above it. For
example, the command fill-line ad-
justs all of the interword spaces in a
line until the right edge of the line is
aligned with the right edge of the
previous line, holding the left edge of
the line fixed. This command is typi-
cally used to reestablish right-justifi-
cation for a line of text that has
changed in length—an application of
this command will be described. Simi-
larly, the indent-line
slides a line left or right to align its lefi

command

COMMUNICATIONS OF THE A€M December 1994/Vol 37, No12 B

VISUALIZATION

edge with the left edge of the previ-
ous line, and the command center-
line centers the line relative to the
previous line. These two commands
move the line rigidly, without chang-
ing the interword spacing.

Multilingual Text Editing

Documents containing material in
writing systems other than the
Roman alphabet (e.g., Japanese or
Russian), as well as those using spe-
cialized graphical notations (e.g.,
mathematics or icons for chess pieces)
present a challenge to document pro-
cessing systems founded on the phi-
losophy of format conversion. Each
new type of embedded material in-
creases the difficulty of the recogni-
tion task and the complexity of the
resulting representation. Moreover,
tormat conversion is typically an all-
or-nothing proposition, so that in-
ability to transcribe some material
(e.g., if it uses a writing system that
the recognizer cannot handle) im-
plies the material cannot be edited
and usually means it cannot even be
reproduced.

Image EMACS, by contrast, is
based on a principle of minimal (or
partial) interpretation in which a text
image is interpreted only to the ex-
tent necessary to support a specific set
of text editing operations. As previ-
ously discussed, Image EMACS ana-
lyzes a text image into a vertical se-
quence of “lines,” where each line is a
horizontal sequence of “characters.”
A line is defined as a horizontal strip
of image that is bounded above and
below by blank rows. Similarly, a char-

acter is defined as a collection of

image-connected components assem-
bled according to simple grouping
rules. Thus, the terms “line” and “char-
acter,” while suggestive of rich seman-
tics, actually correspond to relatively
weak assumptions about the geomet-
ric structure of typeset English.

The geometric assumptions under-
lying Image EMACS are satisfied by
the written forms of many languages
besides English, as well as by nota-
tional systems other than typeset text.
Thus, although Image EMACS was
originally developed for editing im-
ages of typeset English, it is applicable
to a much larger class of documents,
including those containing more than

AND DESIGN

one writing system. Moreover, 1f
the assumptions underlying lmage
EMACS fail for some portion of an
image, other regions can still be ed-
ited. Furthermore, even those re-
gions for which the analysis fails can
be reproduced with full fidelity. The
analysis performed by Image EMACS
1s always invertible, so that analysis
“success” or “failure” refers not to the com-
pleteness of the resulting representation,
but rather to the degree to which the struc-
ture of the representation matches the
user’s conceptual model of the material.

Figure 5(a) shows examples of Chi-
nese and Vietnamese text containing
embedded English numerals. Figure
5(b) shows the result of editing the
embedded text to replace occur-
rences of ‘586" with ‘510" and '330°
with ‘310.” Because the geometric lay-
out of the text satisties the Image
EMACS assumptions about line struc-
ture, the image was correctly parsed
into a sequence of four lines. The in-
dividual connected components of
most of the Vietnamese and Chinese
characters were correctly grouped. A
few of the Chinese characters com-
prise component subgroups that are
separated by an all-white vertical col-

Table 1. Exampiles of Image
EMACS linear text editing
commands.

Cursor Movement Commands

move-to-end-of-line
move-to-next-char
move-to-next-line
move-to-next-word
move-to-end-of-buffer
move-to-mouse

Insertion and Deletion Commands

delete-char
cut-line
cut-region
cut-word
paste-cut-text
copy-mouse-char

Key Binding Commands

teach-chars
key-bindings-from-font
key-bindings-to-buffer
key-bindings-from-buffer
search-for-string

68 December 1994/ Vol.37, Nu.l? cOMMUNICATIONS OF THE ACM

umn; these were erroneously broken
into two separate characters. Most
importantly, the English numerals
were correctly identified as individual
characters, which enabled successful
editing. The appearance of the re-
mainder of the text was preserved,
even though the analysis was partly in
€rror.

Text Reformatting

The appearance of a given page of
text results from combining a stream
of textual material (the “content” of
the document) with the formatting
information that determines the posi-
toning and layout of the material.
Image EMACS can be used to modify
the layout structure of scanned text
without disturbing the content or
font of the text. This type of refor-
matting can be used, for example, o
collect the text of an article that hop-
scotches across several pages of a
magazine onto a single page. Com-
pared with a conventional document
recognition approach to this prob-
lem, reformatting at the image level is
guaranteed to introduce no content
errors and will preserve more aspects
of the “look” of the original material,
such as unique fonts.

Figure 6 shows the result of using
Image EMACS to reformat the text in
Figure 1 into a slightly wider column.
This operation involves performing
enough image analysis to represent
the image as a sequence of lines of
word-sized units, but does not neces-
sarily require complete segmentation
into characters. One exception is that
hyphens at the ends of lines must be
isolated so that they can be removed
if necessary. In this example, the hy-
phens were manually removed; a
more sophisticated system might per-
form enough character recognition to
detect hyphenation automatically.

Differential Text Comparison

Differential text comparison is a use-
ful tool for identifying editing
changes in scenarios such as exchang-
ing document drafts with a coauthor
or comparing successive releases of
source code or documentation. The
objective of text image comparison is
to summarize the changes between
two separately scanned versions of a

text document. Figure 7 shows a

(a)

#F FITREEEB11-6888 o

BEEERR415/586 F1213/330 SRAAEE EHBAH R L

D¢ biét thém tin tuc vé sy thay ddi sd khu vyc 415/586 va 213/
330 bing tiéng Viét xin goi sd dién thoai mién phi 811-5315.

(b)

B:F > AFTRERTE5811-6888 ©

BAEEM415/510 A1213/310 RIAEFE FH BB

D4 biét thém tin tic v& sy thay ddi sé khu vuc 415/510 va 213/
310 bing tiéng Viét xin goi sé dién thoai mién phi 811-5315.

Flgure 5. Editing English text
embedded in a multilingual doc-
ument: (@) Chinese and Vietnam-
ese texts containing English
numerals; (b) Result of replacing
586" with 510" and "'330" with
310",

simple example of unage-based text
comparison implemented in Image
EMACS.

Figure 7(a) shows a portion of the
original (“before”) buffer and Figure
7(b) shows the corresponding portion
of the final (“after”) buffer. Figure
7(c) shows a copy of the original
buffer annotated with proofreading

marks that summarize how it can be
transformed into the final buffer
through a sequence of character in-
sertions and deletions. A deleted
character is displayed with a horizon-
tal line drawn through it. An inserted
character is written in the left margin
with a caret below the line to indicate
the insertion point.

Buffer comparison is performed
using a standard dynamic program-
ming method [12] of string compari-
son with bitmap cross-correlation to
match individual characters. The
Image EMACS implementation of
buffer comparison is character ori-
ented and treats all whitespace char-
acters (1.e., CR and Space) as equiva-
lent. As a result, text comparison is

based solely on reading order and 1s
insensitive to the location of line
breaks. In this respect, it differs from
line-oriented file comparisons such as
the Unix diff utility. However, there
is nothing essential about our partic-
ular design decision—it was intended
primarily to make comparison insen-
sitive to text reformatting (unless re-

Figure 6. An example ofimage-
based text reformatting. Thisis
the same text as Figure 1 refor-
matted to a slightly wider col-
umn. The extra hyphens at the
ends of the lines of the original
text were removed manually.

XEROX operates a private long-distance telephone

system called Intelnet.

The netword consists of 12

interconnected AT&T telephone switching centres with

circuits to every major location in the

Europe,

faster, more

service than the public

United States,

Canada and Mexico. Intelnet, when properly
used, can be an inportant productivity tool,

providing

convenient and less expensive tlephone
long-distance networks.

COMMUMNICATIONS OF THE ACM December 1994/ Vol 37, Nol2 58

VISUALIZATION

formatting causes changes in hy-
phenation).

As the text comparison example il-
lustrates, string comparison by image
correlation can form the basis for
implementing a variety of text image
file utilities that are analogous to con-
ventional text file operations. Beside
diff, other examples from Unix in-
clude awk, cat, colrm, expand,
and grep.

Preprocessing for Character
Recognition

The state of the art in character rec-

ognition supports the transcription of

simple text with accuracy sufficient
for many applications. Less adequate
are currently available techniques for
recognizing more complex graphical
languages such as mathematical nota-
tion and for automatically recon-
structing formatting and layout infor-
mation from scanned documents.
Often, formatting commands and
mathematics are added tw a docu-
ment manually, as a postprocessing
operation after the basic text has been
recognized. The process of adding
markup can be tedious and error-
prone, in part because it involves fre-
quent shifts of attention between the
original document image and the
emerging electronic representation.
The need to shift attention can be

Figure 7. Finding the editing
changes between two buffers:
(a) Original buffer; (b) Final
buffer; (c) A copy of the original
buffer, with automatically gener-
ated proofreader’'s marks show-
ing how to edit the original
buffer to form the final buffer.

(a)

(b)

©

AND DESIGN

reduced significantly by adding
markup to the scanned document
image before character recognition.
The objective is to preprocess the
image into a form in which the for-
matting and layout information is
explicitly present as text that can be
directly transcribed by the character
recognizer. The advantages of the
preprocessing approach are: It plays
to the strengths of existing OCR sys-
tems, rather than their weaknesses;
and it allows the user’s attention to
remain fixed on a single document
that displays both the desired output
and the user-generated formatting
commands, following the “what you
see is what you get” principle of inter-
active system design.

Figure 8(a) shows a bufler contain-
ing a small portion of a scanned doc-
ument originally formatted using
LATEX. Figure 8(b) shows the buffer
after it has been edited into (the
image of) LATEX source code for
creating the image in Figure 8(a).
Most of the editing involves inserting
appropriate commands for setting
the font and entering or leaving math
mode. However, note that the math
symbol "=’ has been replaced by the
LATEX code fragment “mapsto’,
since it was known that the available
character recognizer could not han-
dle that symbol. Finally, Figure 8(c)
shows the result of transcribing the
annotated buffer with an omni-font
character recognizer.

The image-based preprocessing
approach was recently employed by
one of the authors to transcribe a 50-
page technical paper into LATEX in
preparation for revision. (The paper
was several years old and the original
electronic document files were
longer available.) The transcription

no

inportant
important
m 1nportant

TO Deccmber 1994/Vol.57, No.l? COMMUNICATIONS OF THE ACM

process ook about four days, includ-
ing time for implementing a number
of specialized Image EMACS com-
mands for automating certain opera-
tions. The printed document was
high-quality laser printer output and
it was carefully scanned to minimize
defects such as skew and broken or
touching characters. As a result, the
character recognition process was es-
sentally error-free and nearly all of
the editing time was spent adding
markup to the image before recogni-
tion. The transcription was com-
pleted in less time and with less eftort
than the authors expected, based on
their previous experiences in docu-
ment transcription, although no sys-
tematic comparison was made.

Related Work

Image EMACS appears 1o be the first
system explicitly designed to support
interactive text editing of scanned
document images. There are several
systems for bitmap manipulation,
however, that embody some of the
features of Image EMACS.

The system most similar to Image
EMACS in design philosophy 1s Scot
Kim’s Viewpoint [6], a bitmap editor
for text and graphics that was the
subject of Kim’s Ph.D. dissertation.
Viewpoint was conceived as an explo-
ration of the interplay between com-
puters and graphic arts and the way
in which computers might support
visual thinking. A basic feature of
Viewpoint, shared with Image
EMACS, is that the fundamental data
structures are images rather than
structured symbolic
Viewpoint applies this principle more
broadly than Image EMACS; n
Viewpoint, every aspect of the edi-
tor’s state is represented explicitly in

descriptions.

the screen image and can be manipu-
lated by editing the screen bitmap.
For example, an image of the key-
board appears at the bottom ot the
screen; by editing the image inside
the picture of a key, the user changes
the appearance of the character that
appears when that key is pressed.
The Viewpoint screen is organized
as a fixed array of 10-pixel x 10-pixel
cells. This constraint greatly simpli-
fies image parsing and allows
straightforward
some interesting behaviors. For ex-

implementation of

that case (d,r) is called a sample of z. If z: D — R

(a)

that case (d,r) is called a {\em sample} of $z§.
If $z : \script{D} \mapsto \script{R}$

(b)

that case (d, r) is called a {\em sample} of x.

If $x :

ample, Viewpoint embodies a novel
context-sensitive definition of the
beginning of a line. When a CR is
typed, the cursor moves down to the
next row of cells and then to the left
until it encounters a cell containing
an image not currently in any of the
keyboard cells (and therefore, by
hypothesis, not a “character”). How-
ever, the cell array screen model ef-
fectively limits text to fixed-pitch
fonts and restricts the class of images
for which Viewpoint is useful. In par-
ticular, Viewpoint is intended only to
edit images that have been created
using Viewpoint and is not designed
to handle scanned documents.

System Zero [9] combines typical
bitmap editing functions with facili-
ties for imposing simple typographi-
cal constraints, such as linear figure
alignment and figure spacing adjust-
ment when a figure is inserted or de-
leted from a line. System Zero was
conceived primarily to illustrate
broad theoretical issues in figural the-
ory. Compared with Image EMACs,
its support for specific text editing
operations is undeveloped.

Finally, Suenaga and Nagura [15]
describe a non-interactive editor that
uses handwritten marks, similar to
proofreader’s marks, to perform cut-

and-paste rearrangement of blocks of

text and graphics on a scanned page.

Discussion

The notion of image-based document
processing exemplified by Image
EMACS meshes well with the grow-

ing popularity of fax as a means of

transmitting documents. Despite the
potential technical superiority of elec-
tronic mail over fax, fax is currently
used far more widely than electronic

(c)

mail and the gap is still growing [3,
10, 11, 16]. A major reason for the
popularity of fax is that any docu-
ment image can be transmitted, re-
gardless of formatting or content
type, whereas it can be argued that
only raw text can be reliably sent be-
tween electronic mail users. Because
there is no universally accepted inter-
change standard for compound doc-
uments, structured document repre-
sentations that promise great power
are frequently idiosyncratic to one
particular document processing sys-
tem. Furthermore, the obvious ap-
proach to solving this problem—the
introduction of standards—has been
hampered by organizational difficul-
ties and marketplace inertia.
Experience with Image EMACS
shows that a surprising range of text
editing operations can be imple-
mented without character recogni-
tion or sophisticated image analysis.
This observation, combined with the
emergence of high-speed telecom-
munication networks supporting fac-
simile transmission, suggests that
image-based—or more broadly, ap-
pearance-based—document process-
ing could provide a natural and
smoothly evolving path from paper-
based work flows toward the ubiqui-
tous use and interchange of elec-
tronic documents. Perhaps the pri-
mary role of structured repre-
sentations will be not for interchange,
but rather for facilitating the private
goals of individual users. In this
model, images will serve as the pri-
mary representation for communicat-
ing across system boundaries, while
structured representations will be
generated locally as needed to carry
out operations requested by a user.

\script{D} \mapsto \script{R}$

Figure 8. Image editing to pre-
pare a document for character
recognition: (a) Original image;
(b) Image after insertion of LATEX
commands; (c) Result of charac-
ter recognition of annotated
image.

From our experience with Image
EMACS we have identified several
principles for the design of scanned
document processing systems:

Fidelity. A scanned document pro-
cessing system should preserve dis-
tinctive visual appearance. Some vi-
sual features, such as fonts and logos,
are the results of significant effort in
graphic design. To lose or remove
them without explicit request from
the user lowers the quality of the doc-
ument represented by the system.

Local analysis vs. long-distance com-
munication. A distinction should be
drawn between representations in-
tended to support local manipulation
of a document image and representa-
tions used to communicate the docu-
ment between systems. Most current
systems founded on the principle of
format conversion confuse these two
uses. Adhering to this distinction pro-
vides the system designer flexibility in
choosing representations that maxi-
mize the effectiveness for the two dif-
ferent tasks. In particular, by keeping
these tasks separate we can ensure
that analysis errors do not corrupt
what is communicated.

Representation for analysis. Given the
current state-of-the-art in document
recognition, each attempt to interpret
the image introduces the possibility of

COMMUNICATIONS OF THE ACM Dccember 1994/ Vol.37, No.12 1‘

VISUALIZATION

error. Consequently, it seems pru-
dent to interpret the image only to
the extent demanded by the particu-
lar task, in order to minimize unnec-
Representations for
analysis should be designed to reflect
a style of processing that is demand-
driven, incremental, and local to the
task. The primary role of structured
representations might not be for stor-
age or interchange, but rather for fa-
cilitating the private goals of users.
This viewpoint also suggests that
analysis representations are subordi-
nate to the (generic} document pro-
cessing operations, which apply to
both scanned and structured docu-
ment representations.

€5sary error.

AND DESIGN

Representation for communication.
Interchange is the only operation
that requires agreement among differ-
ent sites about the representation of a
document. Since interpretations are
in general not sharable across system
boundaries because of differences in
goals, the representation chosen for
sharing can reflect this focus on inter-
operability without considering other
processing operations. A representa-
tion that imposes no interpretation is
often the most appropriate one for
the purpose of sharing. Document
images are one such representation.
The existence of high-speed telecom-
munication networks for signal and
image (ransmission supports
choice.

Longevity. Because the languages
used to express symbolic descriptions
of documents are replaced over time,
they do not represent a stable base in
which to encode documents for stor-
age and subsequent retrieval. A more
plausible scenario for constructing a
large library of electronic documents
would rely on document images for
the base representation, which would

this

be augmented by an evolving set of

image-based document processing
commands, including those adapted
from traditional document recogni-
tion research. @

References

1. Adobe Systems Inc. PostSeript Lan-
guage Reference Manual, 2d. ed. Ad-
dison-Wesley, Reading, Mass., 1990.

2. Baird, H., Bunke, H., and Yamamoto,
K., Eds. Structured Document Image
Analysis. Springer-Verlag, Heidelberg,
Germany, 1992.

3. Borenstein, N. Why do people prefer
fax to email? In Preliminary Proceedings
of IFIP WG 6.5 International Symposiwm
on Message Handling Systems and Appli-
cation Layer Communication Protocols.
Zurich, Switzerland, October 1990.

4. Duda, R., and Hart, P. Pattern Classifi-

cation and Scene Analysis. Wiley, New

York, 1973.

Horn, B. Rebot Vision. MIT Press,

Cambridge, Mass., 1986.

6. Kim, S. Viewpoint: Towards a Computer
for Visual Thinkers. Ph.D. dissertation,
Computers and Graphic
Stanford University, 1987,

7. Kopec, G. Least-Squares Font Metric
Estimation from Images. IEEE Trans.
Image Process. 2, 4 (Oct. 1993), 510-
519.

8. Kopec, G., and Bagley, S. Editing

hd

Design,

12 December 1994/ Vol 37, No.ll COMMUNICATIONS OF THE ACM

immages of text. In £P9%, R, Furuta,
Ed. Cambridge University Press,
Cambridge, U.K. 1990,

Levy, D. On the design of tailorable, fig-
ural editors. SSL Report P89-00018,
Xerox PARC, Pale Alo, Calif,, Janu-
ary 1987.

Markoff, J. Marrying the PC and fax
machine. New York Times, (May 2,
1990), p. C8.

McCarthy, J. Networks considered
harmful for electronic mail. Comaman.
ACM 32, 12 (Dec. 1989), 1389-1390.
Miller, W., and Myers, E. A file com-
parison program. Software—Practice
and Experience 15, 11 (Nov. 1985},
1025-1040.
Nagy G.

®

10

11

12

13. Towards a structured-
document-image utility. In Proceedings
of International Association for Pattern
Recognition Workshop on Syntactic and
Structural Pattern Recognition, (Murray
Hill, N.J., June 1990),

Stallman, R. GNU Emacs Manual. Free
Software Foundation,
Mass., 1986.

15. Suenaga, Y., and Nagura, N. A fac-
simile-based manuscript layout and
editing system by auxiliary mark rec-
ognition. In Proceedings of the IEEE
Fifth Imternational Conference on Paltern
Recognition, 1980.

Wilkes, M. Networks, email, and fax.
Commun. ACM 33, 6 (June 1990), 631-
633.

14

Cambridge,

16.

About the Authors:

STEVEN C. BAGLEY is a former member
of the research staff in the Systems and
Practices Laboratory of the Xerox Palo
Alto Research Center. Current research
interests include premedical studies. Au-
thor’s Present Address: 25 Stowe Lane,
Menlo Park, CA 94025; email:
bagley@camis.stanford.edu

GARY E. KOPEC is a member of the re-
search stafl’ in the Information Sciences
and Technologies Laboratory of the
Xerox Palo Alto Research Center. Current
research interests include document
image analysis, pattern recognition, and
signal processing. Author’s Present Ad-
dress: Xerox PARC, 3333 Coyote Hill Rd.,
Palo Alto, CA 94304; email: kopec@
parc.xerox.com

Permission to copy without fee all or part of this
material is granted provided that the copies are
not made or distributed for direct commercial
advantage, the ACM copyright notice and the
title of the publication and its date appear, and
notice is given that copying is by permission of
the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee
and/or specific permission.

© ACM 0002-0782/94/1200 $3.50

